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1 Probability

Sets: Sets are denoted using calligraphic font, e.g. A = {1, 2, 3, 4, 5}. If a is an element of A, we write
a ∈ A. The number of elements in A (i.e. cardinality) is denoted by |A|. If S is contained in A, we write
S ⊆ A, i.e. S is a subset of A. Here S can be equal to A. If S is strictly contained in A, we write S ⊂ A.
For a pair of sets A and B, the set difference is defined as

A \ B ≡ {elements in A and not in B }.

The union of two sets is denoted by A ∪ B, while their intersection is denoted by A ∩ B. The empty set,
which contains no elements, is denoted by ∅. If two sets do not overlap, then their intersection is the
empty set, e.g. {1, 2, 3} ∩ {4, 5, 6} = ∅. For any set A, we have ∅ ∪ A = A, ∅ ∩ A = ∅, and ∅ ⊆ A.

Probability Space: Consider a random experiment, e.g. tossing a coin, or rolling a dice. The sample
space Ω is the set of all possible outcomes of the random experiment in question. In this course, we mostly
work with discrete sample spaces, where Ω is finite or countably infinite, i.e. Ω = {ω1, ω2, . . . , ωn} for
some n ≤ ∞. An event is a subset of Ω. Events include the certain event Ω, and the empty event ∅ (or
impossible event). An event A occurs when the outcome of the random experiment is an element in A.
A probability measure P assigns a real number between 0 and 1 to each event, such that

P[Ω] = 1, and P[A ∪ B] = P[A] + P[B] if A ∩ B = ∅.

The above implies that P[∅] = 0. Note that we write P[A] or P{A} to denote the probability of event A.
For an event A ⊆ Ω, the complement Ac is defined as Ac ≡ Ω \ A.
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Example 1. Consider a random experiment involving tossing a coin and observing the outcome. Here
we have Ω = {H,T}, where H denotes heads and T denotes tails. The set of all events (i.e. the event
space) is given by {∅, {H}, {T}, {H,T}}. If the coin is fair, then we will have P

[
{H}

]
= P

[
{T}

]
= 0.5.

Joint Probability: For two events A and B, their joint probability is given by P[A ∩ B], i.e. the
probability that both A and B occur. In the above example, P[{H} ∩ {T}] = 0, as a coin cannot be
simultaneously heads and tails. These are called mutually exclusive or disjoint events.



Independence: Two events A and B are independent if and only if their joint probability is equal to
the product of their probabilities, i.e.

A and B are independent ⇐⇒ P[A ∩ B] = P[A]P[B].

Note that mutual exclusiveness and independence are not the same thing.

Example 2. Consider another experiment of tossing a pair of fair coins and observing the outcomes. Here
each outcome is an ordered pair and the sample space is given by Ω =

{
(H,H), (H,T), (T,H), (T,T)

}
.

The event space consists of all 24 = 16 subsets of Ω (including ∅ and Ω itself). Assuming coins are
independent, each of the 4 outcomes will have a probability of 0.25. The event of observing at least one
head is given by

{
(H,H), (H,T), (T,H)

}
. This has a probability of 0.75.

Conditional Probability: For events A and B, the conditional probability of A given B is defined as

P[A|B] ≡ P[A ∩ B]

P[B]
.

Note that P[A ∩ B] = P[A|B]P[B]. Since P[A ∩ B] = P[B ∩ A], we can exchange the order and write
P[A ∩ B] = P[B ∩ A] = P[B|A]P[A]. This leads to Bayes’ rule

P[B|A] =
P[A|B]P[B]

P[A]
.

Law of Total Probability: Let B1,B2, . . . ,Bn be a partition of the sample space, i.e. all n events are
disjoint and their union is the sample space. Then

P[A] =

n∑
i=1

P[A ∩ Bi] =

n∑
i=1

P[A | Bi]P[Bi].

As a special case, we have P[A] = P[A | B]P[B] + P[A | Bc]P[Bc].

Example 3. Assume that there is a 1% chance of being infected with a particular virus and you take a
test which is 95 % accurate, i.e. P[+ve test | infected] = P[−ve test | not infected] = 0.95. Given that
you test positive, what is the probability that you have the virus?

Let I denote the event of being infected, and P be the event of testing positive. Note that Ic is
the event of not being infected, while Pc is the event of testing negative. We have P[I] = 0.01 and
P[P | I] = P[Pc | Ic] = 0.95. We want to find P[I | P]. This is calculated as follows

P[I | P] =
P[P | I]P[I]

P[P]

=
P[P | I]P[I]

P[P | I]P[I] + P[P | Ic]P[Ic]

=
P[P | I]P[I]

P[P | I]P[I] +
(
1− P[Pc | Ic]

)(
1− P[I]

)
=

0.95× 0.01

0.95× 0.01 + 0.1× 0.99
= 0.16.

Despite testing positive, the probability that you are infected is only 16%.

Chain Rule: From the definition of the conditional probability, we get

P[A1 ∩ A2 ∩ · · · ∩ An] = P[A1]P[A2|A1]P[A3|A1 ∩ A2] · · ·P[An|A1 ∩ A2 ∩ · · · ∩ An−1].

Note that this expansion can also be written in reverse order (or any other order of events).
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Union Bound: The following inequality holds (verify it!)

P[A1 ∪ A2 ∪ · · · ∪ An] ≤
n∑

i=1

P[Ai].

Random Variables: A random variable is a function that assigns numerical values to outcomes of a
random experiment, e.g. X : Ω→ X maps each outcome ω in Ω to a corresponding value X(ω) from the
set X . For instance, we can define a binary random variable for the coin toss experiment from earlier,
such that X = {0, 1}, X(H) = 1 and X(T) = 0. From now on, the outcome argument ω in X(ω) will be
dropped, and a random variable X(ω) will be simply denoted by X.

2 Random Variables

Random variables are denoted by uppercase letters, e.g. X,Y, Z. A random variable X takes values on
a set X , which we often refer to as the alphabet of X. In this course, we mainly focus on real-valued
discrete random variables, i.e. X is a countable set and its elements are real numbers.

Probability Mass Function: The probability mass function (pmf) of X is given by

pX(x) ≡ P[X = x], for all x ∈ X

which assigns a probability between 0 and 1 to each value in X . A pmf satisfies∑
x∈X

pX(x) = 1 and pX(x) ≥ 0, for all x ∈ X .

A pmf pX(x) is also referred to as the distribution of X. For brevity, we will often drop the subscript in
pX(x) and write it as p(x), where the argument x identifies p(x) as a pmf of X.

Expectation: The expected value of a random variable X is defined as

EX ≡
∑
x∈X

xpX(x).

We sometimes use brackets as E[X]. If f(X) is some function of X, then E
[
f(X)

]
=
∑

x∈X pX(x)f(x).

Variance: The variance of a random variable X is defined as

var(X) ≡ E
[
(X − EX)2

]
The variance is also equivalently given by var(X) = E[X2]− (E[X])2. Verify this!

Example 4. (Bernoulli) A Bernoulli random variable is a binary random variable with an alphabet
X = {0, 1} and a pmf of

pX(x) =

{
1− p, x = 0

p, x = 1

where 0 ≤ p ≤ 1 is a parameter. We use Bern(p) to denote a Bernoulli distribution with parameter p,
and X ∼ Bern(p) means that X has a distribution Bern(p). A Bernoulli random variable represents a
coin toss, which is fair when p = 0.5 and biased otherwise. The expected value and variance are given by
EX = p and var(X) = p(1− p), respectively (verify this!).
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Joint pmf: Consider a pair of random variables X and Y taking values on X and Y, respectively. The
joint pmf is given by

pXY (x, y) ≡ P[X = x, Y = y], for all (x, y) ∈ X × Y.

Note that X ×Y ≡ {(x, y) : x ∈ X , y ∈ Y} is the set of all pairs (x, y), known as the Cartesian product of
X and Y. The pair (X,Y ) can be seen as a vector-valued random variable with a pmf pXY (x, y), which
satisfies

∑
(x,y)∈X×Y pXY (x, y) = 1 and pXY (x, y) ≥ 0 for all (x, y) ∈ X × Y.

Marginal pmfs: From a joint pmf pXY (x, y), we obtain the marginal pmfs of X and Y as follows

pX(x) =
∑
y∈Y

pXY (x, y) and pY (y) =
∑
x∈X

pXY (x, y).

Independence: The two random variables X and Y are independent if and only if their joint pmf is
equal to the product of their marginal pmfs, i.e.

pXY (x, y) = pX(x)pY (y).

Conditional pmfs: The conditional pmf of X given Y = y is defined as

pX|Y (x|y) ≡ P[X = x|Y = y] =
pXY (x, y)

pY (y)
.

Similarly, the conditional pmf of Y given X = x is given by

pY |X(y|x) ≡ P[Y = y|X = x] =
pXY (x, y)

pX(x)
.

Using brief notation, pX|Y (x|y) and pY |X(y|x) are denoted by p(x|y) and p(y|x), respectively. We use this
brief notation when there is no ambiguity. Note that each conditional pmf is a distribution, e.g. each
value y ∈ Y defines a new (conditional) distribution for X given by p(x|y).

Note that if X and Y are independent, then we have

p(x|y) = p(x).

In this case, regardless of the value Y takes, the distribution of X remains unchanged. Similarly, we will
also have p(y|x) = p(y).

Example 5. Consider a pair of Bernoulli (or binary) random variables X and Y with a joint distribution
given in the following table

Y = 0 Y = 1

X = 0 0.5 0.1

X = 1 0.2 0.2

Here the marginal distributions are given by

pX(x) =

{
0.6, x = 0

0.4, x = 1
and pY (y) =

{
0.7, y = 0

0.3, y = 1.

The conditional distributions of X given Y = 0 and X given Y = 1 are given by

pX|Y (x|0) =

{
5/7, x = 0

2/7, x = 1
and pX|Y (x|1) =

{
1/3, x = 0

2/3, x = 1.

Work out the conditional distributions of Y given X.
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Chain Rule: Let X1, X2, . . . , Xn have a joint pmf of p(x1, x2, . . . , xn). We have

p(x1, x2, . . . , xn) = p(x1)p(x2|x1)p(x3|x1, x2) · · · p(xn|x1, x2, . . . , xn−1)

which follows from the definition of the conditional pmf. This expansion can be written more briefly as
p(x1, x2, . . . , xn) =

∏n
i=1 p(xi|x1, . . . , xi−1). When i = 1 here, we have p(xi|x1, . . . , xi−1) = p(xi) = p(x1),

i.e. the sequence x1, . . . , xi−1 is empty in this case.

Independent and Identically Distributed (i.i.d.): A sequence of random variables X1, X2, . . . , Xn

is i.i.d. if all random variables are independent and have the same marginal distribution pX(x), i.e.

p(x1, x2, . . . , xn) = pX(x1)pX(x2) · · · pX(xn) =
n∏

i=1

pX(xi).

Example 6. (Binomial) Consider an i.i.d. sequence X1, X2, . . . , Xn in which each entry is a Bernoulli
random variable with parameter p (i.e. has a Bern(p) distribution). The number of ones in this random
sequence is another random variable given by K =

∑n
i=1Xi, which takes values on the set {0, 1, 2, . . . , n}.

K has a binomial distribution with parameters (n, p) and a pmf given by

pK(k) =

(
n

k

)
pk(1− p)n−k

where
(
n
k

)
= n!

(n−k)!k! is the binomial coefficient (i.e. n choose k). The expected value and variance are

given by EK = np and var(K) = np(1− p), respectively (verify this!).

Weak Law of Large Numbers Consider a random variable X with distribution p(x) and a finite
expected value, i.e. −∞ < EX <∞. Now let X1, X2, . . . , Xn be a sequence of i.i.d. copies of X, i.e. each
has the same distribution of X. The empirical mean of this sequence is defined as

Xn ≡
1

n

n∑
i=1

Xi.

In case we do not know the true expected value EX, we can estimate it as Xn, given that we have access
to an i.i.d. sample. How good is this estimate? The weak law of large numbers says that the probability
that the empirical mean estimate is bad goes to zero as n grows large. This is formally stated as follows.

Theorem 1. (Weak Law of Large Numbers). For every ε > 0, we have

lim
n→∞

P

{ ∣∣Xn − EX
∣∣ > ε

}
= 0.

Proof. This proof is part of the first assignment. In particular, you will be guided through the steps of
showing that the following inequality holds:

P

{ ∣∣Xn − EX
∣∣ > ε

}
≤ var(X)

nε2
.

Theorem 1 follows directly as the right-hand-side of the above inequality converges to 0 for any ε > 0.
This simple proof of the weak law of large number also requires that var(X) <∞.

3 Convexity

Let’s take a small break from probability, and look at convexity. We will combine the two through Jensen’s
inequality further on. An open interval on the real line is denote by (a, b), for some a < b. Similarly, a
closed interval is denoted by [a, b]. We use f(x) to denote a real-valued function of a real variable x.
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Convex Function: A function f(x) is said to be convex over an interval (a, b) if we have

f
(
λx1 + (1− λ)x2

)
≤ λf(x1) + (1− λ)f(x2)

for every x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1. The function f(x) is strictly convex if the inequality is strict for
all λ ∈ (0, 1), and equality holds only if λ = 0 or λ = 1.

Roughly speaking, convex functions curve upwards and often look like a cup (i.e. ∪). This is seen
from the definition by noting that a convex function always lies below any chord. Examples of convex
functions are x2, ex and |x| (see below). The opposite of convex functions are concave functions.

x

x2

x

ex

Concave Function: A function f(x) is said to be concave over an interval (a, b) if we have

f
(
λx1 + (1− λ)x2

)
≥ λf(x1) + (1− λ)f(x2)

for every x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1. The function f(x) is strictly concave if the inequality is strict for
all λ ∈ (0, 1), and equality holds only if λ = 0 or λ = 1.

From the above definition, it follows that a function f(x) is concave if −f(x) is convex. Hence roughly
speaking, concave functions curve downwards and often look like a cap (i.e. ∩). A concave function
always lies above any chord. Examples of concave functions are log(x),

√
x and c− x2 (see below). Note

that an affine (or linear) function given by cx+ d is both convex and concave (verify this!).

x

log2(x)

x

c− x2

Second Derivative: Now assume that the a function f(x) is twice differentiable, i.e. its second deriva-
tive f ′′(x) exists. If f ′′(x) ≥ 0 on an interval (a, b), then the function is convex on that interval. Strictness
in the inequality implies strict convexity. That is

f ′′(x) ≥ 0 =⇒ f(x) is convex. f ′′(x) > 0 =⇒ f(x) is strictly convex. (1)

The second derivative captures the change in the slope of the function. The slope of a convex function is
non-decreasing, or increasing when the function is strictly convex (check this for x2 and ex). Note that
(1) immediately implies the following statement for concave functions

f ′′(x) ≤ 0 =⇒ f(x) is concave. f ′′(x) < 0 =⇒ f(x) is strictly concave. (2)

We now give a proof* (no need to learn this proof) for the statement in (1).
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Proof. Suppose that we have a function f(x) with f ′′(x) ≥ 0 for all x ∈ (a, b). From the Taylor theorem,
for any x0 ∈ (a, b), we can express f(x) as follows:

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x?)

2
(x− x0)2

where x? is between x0 and x. Since x? is also in (a, b), we have f ′′(x?) ≥ 0. Therefore, by removing the

non-negative term f ′′(x?)
2 (x− x0)2, we may only reduce f(x), that is

f(x) ≥ f(x0) + f ′(x0)(x− x0). (3)

Now let’s set x0 = λx1 + (1− λ)x2 for some x1, x2 ∈ (a, b) and λ ∈ [0, 1]. On the other hand, we take x
to be either x1 or x2. Combing with (3), we obtain the two following inequalities

x = x1 =⇒ f(x1) ≥ f(x0) + f ′(x0)(1− λ)(x1 − x2) (4)

x = x2 =⇒ f(x2) ≥ f(x0) + f ′(x0)λ(x2 − x1). (5)

Multiplying (4) by λ and (5) by (1− λ) and adding the resulting inequalities, we obtain

λf(x1) + (1− λ)f(x2) ≥ λ
[
f(x0) + f ′(x0)(1− λ)(x1 − x2)

]
+ (1− λ)

[
f(x0) + f ′(x0)λ(x2 − x1)

]
= f(x0) + f ′(x0)λ(1− λ)(x1 − x2) + f ′(x0)(1− λ)λ(x2 − x1)

= f(x0)

= f(λx1 + (1− λ)x2).

This holds for any x1, x2 ∈ (a, b) and λ ∈ [0, 1], as we can always choose x0 from (a, b) for the Taylor
expansion such that x0 = λx1 + (1− λ)x2. Therefore, f(x) is convex, which completes the proof.

Jensen’s Inequality: We now put together probability and convexity.

Theorem 2. (Jensen’s Inequality). Let X be a random variable and let f be a convex function. We have

Ef(X) ≥ f(EX).

If f is strictly convex, then the inequality is strict. Moreover, if f is strictly convex and Ef(X) = f(EX),
then we must have X = EX (i.e. X is a constant).

Proof. Let’s assume that X takes values in X = {x1, x2, . . . , xk} with probabilities p1, p2, . . . , pk. If
k = 2, the inequality follows directly from the definition of convexity. In particular, we have λ = p1 and
1− λ = 1− p1 = p2, for which we obtain

Ef(X) = p1f(x1) + p2f(x2) ≥ f(p1x1 + p2x2) = f(EX). (6)

Now we wish to show that the statement holds for any k. We do this by induction.
In particular, let’s suppose that the statement holds for any k − 1 mass points. This means that for

a pmf with k − 1 mass points given by p′1, p
′
2, . . . , p

′
k−1, we have

k−1∑
i=1

p′if(xi) ≥ f

(
k−1∑
i=1

p′ixi

)
. (7)

Now let’s go back to our pmf with k mass points p1, p2, . . . , pk. We split this pmf into p1, p2, . . . , pk−1 and
pk. By normalizing p1, p2, . . . , pk−1, we obtain a pmf with k − 1 mass points as follows:

p′i =
pi∑k−1
j=1 pj

=
pi

1− pk
, for all i ∈ {1, 2, . . . , k − 1}.
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We now proceed as follows

k∑
i=1

pif(xi) = pkf(xk) +
k−1∑
i=1

pif(xi)

= pkf(xk) + (1− pk)
k−1∑
i=1

pi
1− pk

f(xi)

= pkf(xk) + (1− pk)

k−1∑
i=1

p′if(xi)

≥ pkf(xk) + (1− pk)f

(
k−1∑
i=1

p′ixi

)
(8)

≥ f

(
pkxk + (1− pk)

k−1∑
i=1

p′ixi

)
(9)

= f

(
k∑

i=1

pixi

)
.

Note that the inequality in (8) is due to our hypothesis that the statement holds for k − 1 (see (7)). On
the other hand, (9) follows from the definition of convexity (see (6)).

Based on the hypothesis (or assumption) that Jensen’s inequality holds for k− 1, we have shown that
it must also hold for k. Since we know that it holds for the case with 2 mass points, this means that it
must hold for the case with 3 mass points, and so on until we reach any k. This completes the proof.
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