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Ch.3: Asymptotic Equipartition Property
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Reading

• Cover & Thomas, Ch. 3 (excluding 3.3) and 7.6.

• Supplementary: Gallager, 3.1; MacKay, Ch. 4.

Before we start

• We use Xn to briefly denote the random sequence (X1, X2, . . . , Xn). Similarly, we use xn to denote
the sequence (x1, x2, . . . , xn). Therefore, p(xn) is the pmf of Xn.

• All logs in this chapter have base 2. Also, all codes are binary (i.e. D = {0, 1}).

Consider a bent coin represented by a binary random variable X with p(0) = 0.1 and p(1) = 0.9, where
0 and 1 represent tails and heads, respectively. An outcome of n independent tosses of this coin is given
by the sequence xn ≡ (x1, x2, . . . , xn), representing one of 2n possible outcomes for this experiment. How
many ones (heads) and zeros (tails) do we expect to see in xn? From the law of large numbers, we know
that 1

n

∑n
i=1 xi will be close to EX = 0.9, especially if n is large enough. It is therefore safe to claim that

for large enough n (many tosses), a typical xn will have roughly 0.9n ones and 0.1n zeros. How many
typical sequences do we have? What is the total probability of these typical sequences? How does this
generalize to other discrete random variables? These questions will be answered in this chapter.

1 Asymptotic Equipartition Property Theorem

The Asymptotic Equipartition Property AEP is the information-theoretic analog of the law of large
numbers (LLN). Suppose that we have a sequence Xn of n i.i.d. copies of a random variable X. The LLN
states that the empirical expectation 1

n

∑n
i=1Xi is close to the true expectation EX for large n. Similarly,

the AEP states that the empirical entropy 1
n

∑n
i=1 log 1

p(Xi)
= 1

n log 1
p(Xn) is close to the true entropy H(X)

for large n. As a result, almost all sequences that we expect see (i.e. typical sequences) have a probability
of p(Xn) ≈ 2−nH(X); the set of typical sequence has roughly 2nH(X) elements; and all remaining sequences
have negligible probability. Recall that the total number of sequences is |X |n = 2n log |X |.

In cases where H(X) is much smaller than log |X |, the set of typical sequences can be considerably
smaller than the set of all sequences. Data compression follows as a consequence: we need roughly nH(X)
bits to represent the set of typical sequences, while remaining can be assigned longer codewords (with
little consequence). Before formalizing all the above statements, we discuss the weak law of large numbers.

1.1 Weak Law of Large Numbers

Consider a random variable X ∼ p(x) with a finite expected value (i.e. −∞ < EX < ∞). Now let
Xn = (X1, X2, . . . , Xn) a sequence of i.i.d. random variables, where Xi ∼ p(x) for all i. The empirical



mean of Xn is defined as

Xn ≡
1

n

n∑
i=1

Xi.

The weak law of large numbers states that the empirical mean Xn converges in probability to EX.

Theorem 1. Let X1, X2, . . . , Xn be i.i.d. ∼ p(x). For every ε > 0, we have

lim
n→∞

P

{ ∣∣Xn − EX
∣∣ > ε

}
= 0. (1)

Note that the sample mean Xn is a random variable, as it depends on the actual realizations of its
constituent random variables. The true mean EX is fixed. Theorem 1 states that the probability that
the sample mean will deviate from the true mean by more than ε diminishes for a large enough sample.
The convergence in the above theorem is called convergence in probability, and will be denote by:

1

n

n∑
i=1

Xi
p→ EX.

Corollary 1. For g(X) such that Eg(X) <∞, we have

1

n

n∑
i=1

g(Xi)
p→ Eg(X).

This holds as g(X1), g(X2), . . . are also i.i.d. random variables.

1.2 The Asymptotic Equipartition Property Theorem

The AEP is given through the following theorem.

Theorem 2. (AEP). If X1, X2, . . . , Xn are i.i.d. ∼ p(x), then

− 1

n
log p(X1, X2, . . . , Xn)

p→ H(X).

Proof. The proof relies on taking g(Xi) = − log p(Xi) and invoking Corollary 1. In particular, we write:

− 1

n
log p(X1, X2, . . . , Xn) = − 1

n
log

n∏
i=1

p(Xi)

= − 1

n

n∑
i=1

log p(Xi)

p→ −E log p(X)

= H(X).

This completes the proof of the AEP.

Using the definition of convergence in probability, Theorem 2 can be stated more elaborately as follows.
For any δ > 0, there exists an integer nδ such that for all n ≥ nδ, we have

1− P
{∣∣∣∣− 1

n
log p(Xn)−H(X)

∣∣∣∣ > ε

}
= P

{∣∣∣∣− 1

n
log p(Xn)−H(X)

∣∣∣∣ ≤ ε} ≥ 1− δ. (2)

Equivalently, we may say that for large enough n, we have:

P

{
H(X)− ε ≤ − 1

n
log p(Xn) ≤ H(X) + ε

}
= P

{
2−n(H(X)+ε) ≤ p(Xn) ≤ 2−n(H(X)−ε)

}
≈ 1.

The above implies that as n grows large, it is likely to observe a sequence Xn = xn which has a probability
given by p(xn) ≈ 2−n(H(X)±ε). It follows that typical outcomes are uniformly distributed over a set of
roughly 2nH(X) sequences. This is known as the typical set. In the words of Cover & Thomas, “Almost
all events are almost equally surprising”, which is especially the case for large n.
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2 Typical Sets

Definition 1. For a pmf p(x), integer n, and any ε > 0, the typical set A(n)
ε is a set of sequences in X n

defined as
A(n)
ε ≡

{
xn ∈ X n : 2−n(H(X)+ε) ≤ p(xn) ≤ 2−n(H(X)−ε)

}
.

It follows from the above definition that the typical set A(n)
ε is equivalently defined as

A(n)
ε =

{
xn ∈ X n :

∣∣∣∣− 1

n
log p(xn)−H(X)

∣∣∣∣ ≤ ε} . (3)

Some key properties of the typical set are stated in the following theorem.

Theorem 3. The typical set A(n)
ε satisfies the following properties:

1. If xn ∈ A(n)
ε , then H(X)− ε ≤ − 1

n log p(xn) ≤ H(X) + ε.

2. P
{
A(n)
ε

}
≥ 1− ε for large enough n.

3.
∣∣A(n)

ε

∣∣ ≤ 2n(H(X)+ε), where
∣∣A(n)

ε

∣∣ is the size of A(n)
ε .

4.
∣∣A(n)

ε

∣∣ ≥ (1− ε)2n(H(X)−ε), for large enough n.

Intuition. Here are some intuitions related to the above properties of the typical set:

1. Say we observed a sequence xn by sampling X independently n times. If xn is typical, then the
“empirical” entropy given by − 1

n log p(xn) = 1
n

∑n
i=1 log 1

p(xi)
will be close to the entropy H(X).

2. As n grows large, a sequence xn observed by i.i.d. sampling of X will very likely be typical. An
implication is that the above entropy estimate will be close to the true entropy with high probability.

3. The third and fourth properties imply that the size of the typical set is ≈ 2nH(X) for large n.

Proof. The proofs for the above properties are given as follows:

1. The first property follows immediately from (3).

2. Note that the probability of the typical set P
{
A(n)
ε

}
is equal to P

{
Xn ∈ A(n)

ε

}
, i.e. the probability

that a random sequence Xn is typical. With this in mind, we proceed as follows:

P

{
Xn ∈ A(n)

ε

}
= P

{∣∣∣∣− 1

n
log p(Xn)−H(X)

∣∣∣∣ ≤ ε}
≥ 1− ε, for all n ≥ nε (4)

where (4) follows from (2) by setting δ = ε.

3. This property is shown as follows:

1 =
∑

xn∈Xn
p(xn)

≥
∑

xn∈A(n)
ε

p(xn)

≥
∑

xn∈A(n)
ε

2−n(H(X)+ε)

=
∣∣A(n)

ε

∣∣2−n(H(X)+ε).

This immediately implies that
∣∣A(n)

ε

∣∣ ≤ 2n(H(X)+ε).
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4. From the above, we know that for all n ≥ nε, we have P
{
A(n)
ε

}
≥ 1− ε. It follows that:

1− ε ≤ P
{
A(n)
ε

}
=

∑
xn∈A(n)

ε

p(xn)

≤
∑

xn∈A(n)
ε

2−n(H(X)−ε) (5)

=
∣∣A(n)

ε

∣∣2−n(H(X)−ε).

This immediately implies that
∣∣A(n)

ε

∣∣ ≥ (1− ε)2n(H(X)−ε).

The typical set is illustrated below. As n grows large, most of the probability concentrates in A(n)
ε .

This observation is exploited next to carry out compression.

X n A(n)
ε

P{A(n)
ε } ≥ 1− ε

|A(n)
ε | ≈ 2nH(X)

p(xn) ≈ 2−nH(X)

xn

3 Application to Data Compression

Now let us consider the problem of compressing an i.i.d. random sequence Xn, which we call a source.
By compression we mean finding a description of Xn which is short on average. We will focus on binary
descriptions: each possible source sequence xn is encoded into a binary codeword C(xn) of length l(xn).
The goal is to make the expected codeword length E [l(Xn)] ≡

∑
xn∈Xn p(x

n)l(xn) as small as possible.
An important requirement is non-singularity to avoid possible confusion when decoding (i.e. unique

decodability). For this, we must have xn 6= x̄n =⇒ C(xn) 6= C(x̄n). This is known as lossless compression
(or lossless sources coding), as opposed to lossy compression where some confusion may be allowed.

Intuition. Think of Xn as text file, which is modeled by a random sequence to represent our lack of
knowledge of its content (we may know its distribution from many previously observed files of the same
category, e.g. English text). Encoding Xn into a binary codeword allows us to store Xn on a hard drive.
Compressing Xn using a short binary description allows us to store Xn with a reduced hard-drive space
requirement. This is what a compression software does (e.g. Zip or RAR), and such compression must be
lossless as we do not wish to loose any text after decompression. Compression of images, however, could
be lossy: we may reduce the resolution to store more photos. Here we focus on lossless compression.

We saw in the previous chapter that we can compress Xn using a source code (e.g. Huffman code)
with expected length satisfying nH(X) ≤ E [l(Xn)] < nH(X)+1. Here we focus on an alternative coding
scheme based on typical sequences and typical sets.
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3.1 Raw bit content

Since Xn takes values in X n, which in turn has a size of m ≡ |X n| = |X |n, it is sufficient to use no more
than dlogme = dn log |X |e < 1 + n log |X | bits to describe Xn. Note that the ceiling function d·e is used
since the quantity n log |X | may not be integer. This raw bit coding is done as follows. We assign a unique
index from 0 to m− 1 to each possible source sequence, from which X n may be written as:

X n =
{
xn(0), xn(1), . . . , xn(m− 1)

}
(6)

where xn(i) is the i-th source sequence. Each sequence xn(i) is then mapped into a corresponding
codeword C(xn(i)) of length dn log |X |e, given by the binary representation of the index m, that is:

i C(xn(i))

0 00 · · · 000
1 00 · · · 001
2 00 · · · 010
3 00 · · · 011
...

m− 1 11 · · · 111

All codewords have the same length dn log |X |e, and hence the average length of this description is less
than n log |X |+ 1 bits. For large n, this becomes close to log |X | bits per source symbol.

Now let us consider a case where the joint pmf p(xn) is such that sequences in some subset A ⊂ X n
are uniformly distributed, while sequences in the complement set Ac (i.e. not in A) have zero probability:

p(xn) =

{
1
|A| , for all xn ∈ A
0, for all xn ∈ Ac.

In this case, we only need to assign codewords to sequences in A, as all remaining sequences never occur.
For this, we need no more than n log |A|+ 1 bits, which is roughly log |A| bits per symbol when n is large.

We now return to our i.i.d. sequence Xn with an arbitrary joint pmf of the form p(xn) =
∏n
i=1 p(xi).

The AEP tells us that as n grows large, p(xn) becomes such that sequences in the typical set A(n)
ε are

almost uniformly distributed, while remaining sequences in the complement A(n)
ε

c
have a probability of

almost zero. Since |A(n)
ε | ≈ 2nH(X), we need roughly nH(X) bits on average to described sequences in the

typical set. Here, however, we cannot simply ignore sequences in A(n)
ε

c
, as the event of encountering one

such sequence remains possible, despite being highly improbable. Sequences in A(n)
ε

c
are assigned longer

codewords, guaranteeing successful decoding, while only marginally affecting the average description
length. The average description length is predominantly determined by the shorter codewords assigned

to A(n)
ε , and will remain around H(X) bits per symbol.

3.2 Typicality compression

Let us partition the set of all possible source sequences X n into two sets: the typical set A(n)
ε and its

complement A(n)
ε

c
≡ X n\A(n)

ε . We can assume, without loss of generality, that the indexing in (6) is done

such that A(n)
ε is given by the first |A(n)

ε | sequences, which implies that the next |X |n − |A(n)
ε | sequences

form the complement A(n)
ε

c
. A sequence xn is then encoded into binary codeword of a length that depends

on whether xn is in A(n)
ε or in A(n)

ε

c
. This is carried out as follows:

• Sequences in A(n)
ε are indexed and then each is assigned a binary representation. Since we have at

most 2n(H(X)+ε) sequences in A(n)
ε , it is sufficient to use dn(H(X) + ε)e < n(H(X) + ε) + 1 bits. For

this purpose, we may use the dn(H(X) + ε)e least significant bits in the raw bit code shown in the
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above table. We then prefix each of the resulting binary sequences by a 0, from which we obtain
codewords of length less than n(H(X) + ε) + 2 as follows:

xn → C ′(xn)→
(
0, C ′(xn)

)
where xn is in A(n)

ε , C ′(xn) is the corresponding binary representation of length no more than
n(H(X) + ε) + 1, and

(
0, C ′(xn)

)
is the resulting binary codeword of length < n(H(X) + ε) + 2.

• Sequences in A(n)
ε

c
are indexed and assigned binary representations as well. Here it is sufficient to

use dn log |X |e ≤ n log |X | + 1 bits, since A(n)
ε

c
is a subset of X n and |X |n is the total number of

sequences. For this purpose, we may directly use the corresponding raw bit code in the table. We
then prefix each of these binary sequences by a 1, from which we obtain binary codewords of length
less than n(log |X |) + 2 as follows:

xn → C ′′(xn)→
(
1, C ′′(xn)

)
where xn is in A(n)

ε

c
, C ′′(xn) is the corresponding binary representation of length no more than

n log |X |+ 1, and
(
0, C ′′(xn)

)
is the resulting codeword of length < n log |X |+ 2.

• The above code is one-to-one and is easily decodable: the first bit acts as a flag, indicating the
length of the binary sequence that follows, and hence whether it is of type C ′(xn) or type C ′′(xn).
This allows us to decode the codeword into the corresponding sequence xn with no confusion.

Next, we analyze the average codeword length for the above code. We have:

E [l(Xn)] =
∑

xn∈Xn
p(xn)l(xn)

=
∑

xn∈A(n)
ε

p(xn)l(xn) +
∑

xn∈A(n)
ε

c

p(xn)l(xn)

≤
∑

xn∈A(n)
ε

p(xn)(n(H(X) + ε) + 2) +
∑

xn∈A(n)
ε

c

p(xn)(n log |X |+ 2)

= P

{
A(n)
ε

}
(n(H(X) + ε) + 2) + P

{
A(n)
ε

c
}

(n log |X |+ 2)

= P

{
A(n)
ε

}
n(H(X) + ε) +

(
1− P

{
A(n)
ε

})
(n log |X |) + 2)

≤ n(H(X) + ε) + ε(n log |X |) + 2, for all n ≥ nε
= n(H(X) + ε′)

where ε′ = ε + ε log |X | + 2
n . Note that ε′ can be made as small as desired by an appropriate choice of ε

followed by an appropriate choice of n. Therefore, we have proved the following theorem.

Theorem 4. Let Xn be i.i.d. ∼ p(x), and let ε > 0 be a small real number. There exists a lossless binary
source code for Xn such that

1

n
E [l(Xn)] ≤ H(X) + ε. (7)

4 Jointly Typical Sets

We now extend the notion of typicality to pairs of jointly distributed sequences. Recall that Cartesian
product of X n and Yn is defined as X n × Yn ≡

{
(xn, yn) : xn ∈ X n, yn ∈ Yn

}
.
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Definition 2. For a joint pmf p(x, y), integer n, and any ε > 0, the jointly typical set A(n)
ε is a set of

sequences in X n × Yn defined as

A(n)
ε ≡

{
(xn, yn) ∈ X n × Yn : 2−n(H(X)+ε) ≤ p(xn) ≤ 2−n(H(X)−ε)

2−n(H(Y )+ε) ≤ p(yn) ≤ 2−n(H(Y )−ε)

2−n(H(X,Y )+ε) ≤ p(xn, yn) ≤ 2−n(H(X,Y )−ε)
}
.

According to the above definition, if xn is a typical sequence, i.e.
∣∣− 1

n log p(xn)−H(X)
∣∣ ≤ ε, and

yn is a typical sequence, i.e.
∣∣− 1

n log p(yn)−H(Y )
∣∣ ≤ ε, then the pair (xn, yn) is not necessarily jointly

typical. An additional condition is required, which is
∣∣− 1

n log p(xn, yn)−H(X,Y )
∣∣ ≤ ε.

xn

yn
X n × Yn

Joint typicality is illustrated above. Sequences marked in black on the upper edge are typical xns, while
sequences marked in black on the left edge are typical yns. A pair (xn, yn) for which both xn and yn are
typical is not necessarily jointly typical. Jointly typical (xn, yn)s are marked in black in the interior.

Note that the size of the jointly typical set A(n)
ε is bounded as

(1− ε)2n(H(X,Y )−ε) ≤
∣∣A(n)

ε

∣∣ ≤ 2n(H(X,Y )+ε). (8)

where the lower bound holds for large enough n. This can be shown by following the same approach used
to prove properties 3 and 4 in Theorem 3 (try this!). We are now ready to present the joint AEP theorem.

Theorem 5. (Joint AEP). Let (Xn, Y n) be i.i.d. with distribution p(xn, yn) =
∏n
i=1 p(xi, yi), and

(X̃n, Ỹ n) be i.i.d with distribution p(xn)p(yn). Note that X̃n and Ỹ n are independent, but have the
same distributions as Xn and Y n, respectively. The following points hold:

1. P
{

(Xn, Y n) ∈ A(n)
ε

}
≥ 1− ε for large enough n.

2. P
{

(X̃n, Ỹ n) ∈ A(n)
ε

}
≤ 2−n(I(X,Y )−3ε).

3. P
{

(X̃n, Ỹ n) ∈ A(n)
ε

}
≥ (1− ε)2−n(I(X,Y )+3ε) for large enough n.

Proof. We have the following.

1. The proof of the first point is left as an exercise.
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2. For the second point, we have

P

{
(X̃n, Ỹ n) ∈ A(n)

ε

}
=

∑
(xn,yn)∈A(n)

ε

p(xn)p(yn)

≤ 2n(H(X,Y )+ε)2−n(H(X)−ε)2−n(H(Y )−ε) (9)

= 2−n(I(X;Y )−3ε).

The inequality in (9) follows from the upper bound in (8), and Definition 2.

3. The proof of the third point is also left as an exercise.

Intuition. Since the pair (Xn, Y n) is jointly generated, we expect it to be jointly typical as n grows large.
For (X̃n, Ỹ n), we have X̃n ∼ Xn and Ỹ n ∼ Y n. However, X̃n and Ỹ n are generated independently,
and therefore they have a much lower probability of being jointly typical, especially if I(X;Y ) is large.
For large n, they may only be jointly typical with high probability if Xn and Y n are independent, i.e.
p(xn, yn) = p(xn)p(yn). In this case, we clearly have I(X;Y ) = 0.

Exercise 1. Prove points 1 and 3 in the joint AEP theorem.
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